Alexander Kuklev (akuklev) wrote,
Alexander Kuklev
akuklev

Categories:

Карри-Говард для FOL

Как все тут знают, по соответствию Карри-Говарда интуиционистской логике высказываний (логике нулевого порядка) соотведствует просто-типизированное лямбда-исчисление с произведениями STLC.

Утверждениям в логике соответствуют типы в STLC, доказательствам утверждений — термы соответствующих типов. У STLC с произведениями есть прекрасная категорная семантика — декартово-замкнутые категории.

С логикой первого порядка всё чуть сложнее. Там кроме утверждений появляются предикаты и отношения — утверждения, зависимые от одной или нескольких переменных, которые тоже имеют свои типы, в зависимости от подлежащей теории. Например, если мы в рамках логики первого порядка описываем линейные пространства, у нас будут типы K скаляров и V векторов.

То есть тут у нас есть такие сущности:
– Типы элементов (например, скаляров и векторов), они образуют категорию с конечными (декартовыми) произведениями. Среди них выделенный тип “1” — нейтральный элемент произведений. Назовём эту категорию T, и в ней особо выделим проекции X ↠ Y (морфизмы, которые выделяют из произведения A × B ×···× D подпроизведение, скажем, B × C, и, опционально, меняют порядок аргументов).
– Типы предикатов P(x : T), где T какой-то тип элементов. Отношения суть предикаты на произведении нескольких элементарных типов отношений, например Id(p : T × T), а обыкновенные высказывания суть предикаты на 1. Если мы хотим чтобы у нас была логика первого порядка с равенством, то как раз постулируется что для каждого типа элементов автоматически есть предикат Id(x : T, y : T).
– Мы хотим, чтобы совокупность предикатов над одним и тем же типом была реализацией логики высказываний (т.е. категория предикатов над T была декартово замкнутой)
– Мы хотим, чтобы каждая проекция в категории элементов X ↠ Y порождала контравариантный функтор между категориями предикатов над Y и предиктов над X (это значит мы можем менять местами переменные у предикатов и добавлять переменные, которые никак не используются), сохраняющий структуру декартовой замкнутости.
— Далее мы хотим, чтобы у нас были кванторы — функторы сопряженные с вложениями слева и справа, соответственно предикаты P(x : X, y : Y) в предикаты (∀x,P)(y : Y) и (∃y,P)(y : Y). То есть мы уменьшаем количество переменных (можем уменьшить и до нуля, тогда получатся предикаты над единицей, то есть высказывания), замыкая убираемые переменные квантором всеобщности или существования.

Вот собственно и вся категорная семантика FOL, называются такие штуковины гипердоктринами (или, соответственно гипердоктринами с равенством, если требуются id-типы). Привожу определение по Pierre Clairambault, “From Categories with Families to Locally Cartesian Closed Categories”:

Screen Shot 2019-07-30 at 15.03.07

А вообще это классика, R. A. G. Seely, Hyperdoctrines, natural deduction, and the Beck condition, Zeitschrift für math. Logik und Grundlagen der Math., Band 29, 505-542 (1983).
Subscribe

  • Умчи меня туда

    Очень давно, примерно 2002-2003 ко мне попала нестандартная запись «Лесного оленя», она мне жутко понравилась аранжировкой, необычным подбором…

  • Towards Univalent Construction Calculus

    Modern constructive Martin-Löf Type Theories (MLTTs) are exceptionally expressive and convenient languages for mathematical reasoning. By “modern”…

  • (no subject)

    Встретил фотографию толпы футбольных фанатов, и она меня скорее напугала, у меня уж точно нет желания быть там среди них. Но внезапно я понял, что…

  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 9 comments